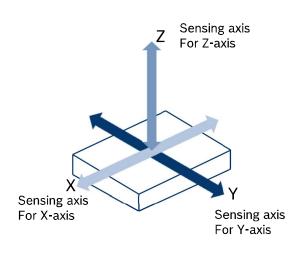

Tilt Compensation

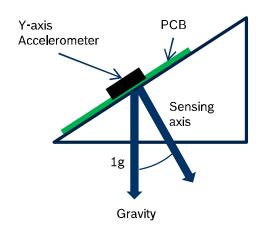
- The horizontal component of the Earth's magnetic field is used to compute the magnetic heading.
- Pitch and Roll are the tilt angles along X and Y axis.
- These tilt angles influence the magnetic field along XY axis.
- When the device is not horizontal, ,i.e. tilt angles are non zero, the heading calculation will be incorrect.
- We need to ensure that tilt angles are compensated before orientation calculation.
- → The tilt angles must be compensated before orientation calculation by rotating the XY plane with the help of accelerometer.

Orientation description

 Orientation of an object describes how it is placed in the 3D space.

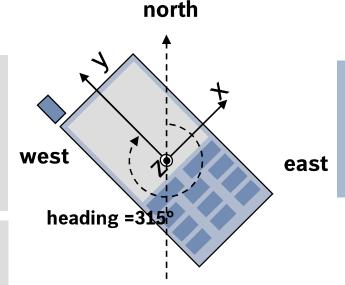

Typically the orientation is given relative to a frame of reference specified by a coordinate system.

- At least three independent values as parts of a 3-dimensional vector are needed to describe the orientation, All the points of the body change their position during a rotation except for those lying on the rotation axis.
- BSX provides Euler angles, Directional Cosine Matrix(DCM) and quaternion to measure the orientation of the device.



Euler Angles

- Three reference frames that could rotate one around the other by starting with a fixed reference frame and performing three rotations
- These are the three angles knows as Roll, Pitch and Heading (yaw)
- Roll and pitch are calculated with the assistance from accelerometer after dynamic suppression and heading using the magnetic field strength from magnetometer



3D Inclinometer Yaw is the angle between the magnetic north direction and the y-axis, around the z-axis. Heading ranges from 0° to 359° (0=North, 90=West, 180=South, 270=East).

This output is required only for Windows 8. There is no change in 3D Inclinometer Yaw when there is change in Roll & Pitch

Roll is defined as the rotation around Y axis (-90 to 90), with increasing values when the x-axis moves toward the z-axis.

$$roll = \arctan(\frac{a_x}{\sqrt{a_v^2 + a_z^2}})$$

south

 $roll = 45^{\circ}$

 $pitch = -45^{\circ}$

horizontal

Heading is the angle between the magnetic north direction and the y-axis, around the z-axis. Heading ranges from 0° to 359° (0=North, 90=East, 180=South, 270=West).

$$heading = \arctan(-\frac{Hxc}{Hyc})$$

Pitch is defined as the rotation around X axis (-180 to 180), with increasing values when the z-axis moves toward the y-axis for Android.

For Windows

For Android

$$pitch = \arctan(-\frac{a_y}{a_z})$$

$$pitch = \arctan(\frac{a_y}{a})$$

Quaternion

- Any rotation in three-dimensions can be represented as an axis vector and an angle of rotation.
- → 4D vector representing object orientation in space and avoids the problem of gimble lock (refer to http://en.wikipedia.org/wiki/Gimbal_lock).
- Also known as orientation quaternions or attitude quaternions.

$$\vec{q} = (w, x, y, z)$$

$$\vec{v} = (x, y, z)$$

$$\vec{q} = (s, \vec{v})$$

$$w = cos(\frac{\alpha}{2})$$

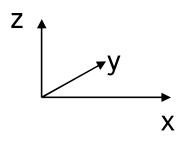
$$x = u_1 \cdot sin(\frac{\alpha}{2}) \rightarrow s = cos(\frac{\alpha}{2})$$

$$y = u_2 \cdot sin(\frac{\alpha}{2}) \rightarrow \vec{v} = sin(\frac{\alpha}{2}) \cdot \vec{u}$$

$$z = u_3 \cdot sin(\frac{\alpha}{2})$$


$$\vec{u} \dots rotation \ axis$$

$$\alpha \dots rotation \ angle$$



Describing rotation with quaternion

Device orientation

Reference orientation

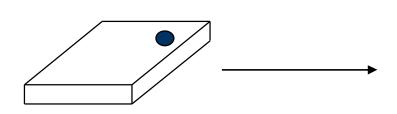
- → Rotation axis → z-axis → \vec{u} = (0, 0, 1)
- → Rotation angle → alpha = 180°

$$w = \cos(\frac{180^{\circ}}{2}) = 0$$

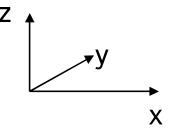
$$x = 0 \cdot \sin(\frac{180^{\circ}}{2}) = 0$$

$$y = 0 \cdot \sin(\frac{180^{\circ}}{2}) = 0$$

$$z = 1 \cdot \sin(\frac{180^{\circ}}{2}) = 1$$


$$\vec{q}$$
 = (w, x, y, z) = (0, 0, 0, 1)

Example 1


Describing rotation with quaternion

Device orientation

Reference orientation

- → Rotation axis → y-axis → \vec{u} = (0, 1, 0)
- → Rotation angle → alpha = 90°

$$w = \cos(\frac{90^{\circ}/2}{2}) = \frac{\sqrt{2}}{2} = 0.701$$

$$x = 0 \cdot \sin(\frac{90^{\circ}/2}{2}) = 0$$

$$y = 1 \cdot \sin(\frac{90^{\circ}/2}{2}) = \frac{\sqrt{2}}{2} = 0.701$$

$$z = 0 \cdot \sin(\frac{90^{\circ}/2}{2}) = 0$$

$$\vec{q}$$
 = (w, x, y, z) = (0.701, 0, 0.701, 0)

Example 2

